Sequences, differences of terms, applications

0. Introduction

How to analyse and make prediction about the behaviour of certain phenomena changing at discrete instances is important in many spheres of life – the growth of ecology, economics, physics, etc. There are different ways to describe changing phenomena. One of them is by a table of observed data. 

1. Definition of a sequence

The concept of a sequence is central to much of the mathematics of change. Informally, a sequence is any ordered set (finite or infinite) of real numbers, i.e. there is a first number a1, a second number a2, and so on. These numbers are called the terms or elements of the sequence. An entire infinite sequence can be denoted by A = ( a1, a2,…, an, …(. As examples of sequences, we have

A = (2, 4, 6, 8,  …(.

B = (2, 4, 8, 16, 32, …(.

C = ( 1/2, 2/3, ¾, 4/5,…(.

In each of these examples , it is possible to determine the patterns from which we can supply meaning to the infinite number of terms represented by the dots (…). This is done by obtaining a formula for the general term, or nth term, for each sequence. That is the general term an is a function of n since for each positive integer n = 1, 2, 3, 4, …, there corresponds a real number an.

2. Example 1 - Graph of a sequence

Let us consider a sequence defined by the general term an=3n – 5. The first six terms of the sequence are: (-2, 1, 4, 7, 10, 13(. Of course, there is an infinite number of terms following these six terms. Moreover, the terms of a sequence can be graphed by plotting points formed by the pair of values (n, an). These six terms can be used to form the following points: (1, -2), (2, 1), (3,4), (4, 7), (5, 10) and (6, 13). If we plot these point on coordinate axes, n and an, we’ll see how the function changes over the interval of plotted values. Such a visualization is important in analyzing trends and understanding the properties of the sequence. Economists and financial planners often use graphs of sequences (like the prices of stocks and bonds over time) to predict future trends by visualizing past performance data.

3. Finding the general term

It is often important that we be able to determine the pattern or formula for the general term of a sequence. Knowing the formula helps us to understand how the sequence changes and the trends in its behaviour. In the case of sequence A we could assume that the 6th term should be 12, since each element is 2 more than the preceding one, i.e. 

an+1  (  an = 2








(1)

for every n. In formulating (1) and asserting that it continues to hold for all positive integer values of n, we are going out on a limb.

To illustrate this let ‘s take for example  the first 3 terms of a sequence to be 2, 4, 6 and try to predict the forth term. We already know that these three terms satisfy (1). But they also satisfy:

an+1  = an2 (  5an + 10







(2)

Using (1) we predict the next term to be a4 = 8, but using (2), we get a4 = 16. There is no single answer to what the correct equation is. Either could be correct, or even a different pattern of equation may be correct. If the number sequence represents the values of certain variable describing the status of the observed phenomenon in given moments of time, mathematicians usually leave finding the right pattern to the scientists observing the behaviour of this phenomenon. The job of mathematicians is mostly to draw conclusions about the equations that fit the patterns determined by the scientists.

4. Differences of Sequences

The approach of using differences of terms does not help for all the problems involving sequences. However, for many sequences, the use of differences can be very profitable and, moreover, the differences themselves prove extremely valuable in many other contexts. For our considerations it will be useful to denote the difference between two successive terms of a sequence by means of the difference operator (, which is defined for any sequence A= ( a1, a2,…, an …(, as follows:

( a1= a2 (  a1, 

( a2= a3 (  a2, 

and, in general

( an = an+1 (  an

for any value of n. The difference operator represents the change in the sequence. A useful application of this operator arises when we apply it to a sequence of terms arising from a linear function.

4.1 Example

Consider the sequence ( an (=(3n - 5( for values of n = 1, 2, 3, …

	n
	an
	( an

	1
	-2
	3

	2
	1
	3

	3
	4
	3

	4
	7
	3

	5
	10
	3

	6
	13
	3


Notice that the first six terms are the same as those in Example 1 and the differences ( an are all constant.  The value of this constant is 3, which is exactly the slope of the graph of the linear function  an =3n – 5. This is not an accident, as Theorem 1 shows.

Theorem 1. If an = cn +b (where c and b are constants and this holds for n = 1, 2, 3, …), then

· ( an are constant for all n, and
· the graph of an against n is a straight line

Proof

1.  ( an = an+1 (  an =  (c(n+1) + b ) (   (cn + b) = c 
2. Successive points on the line are (n, an) and (n + 1, an+1). The slope m of the segment connecting these points is obtained in the usual way as the difference in y-coordinates divided by the difference in x-coordinates. Therefore:

m = (an+1 (  an ) / (n + 1( n) =  c (n + 1) + b (  (cn + b) = c

It would be interesting to know if the converse of Theorem 1 holds. If we know that the differences of the sequence ( an ( are constant  for all n, can we conclude that there are constants c and b so that an = cn +b for all n? The answer is yes, as seen in Theorem 2.

Theorem 2. If ( an = c (where c is a constant independent of n) then there is a linear function for an (i.e. there exists a constant b so that an = cn +b ).

To see how to prove this theorem, try taking a specific sequence with a constant difference and try working out a formula for an. This will give you the main idea.

How could we apply Theorem 2? Suppose we had started with the values in the table but didn’t know the function from which the data came. We could reconstruct this function in the following way. The fact that the difference are all 3 shows that we want a formula of the form an = 3n +b. To find b, we will use the fact that a1 = (2. Thus,

(2 = 3.1 + b, so b = (5. Therefore, our function is
an =3n + 5

4.2 Example

Let us consider the sequence

A = (1, 3, 6, 10, 15, 21,  …(.

If we apply the difference operator to the elements of the sequence, we obtain a new sequence of differences:

(A  = (2, 3, 4, 5, 6,  …(.

Since this itself is a sequence of numbers, we can apply the difference operator to it. Let us denote ((( an) by (2 an and call it the second difference.
We find in this example that all the second differences are equal to 1, or equivalently,

(2 A  = (1, 1, 1, 1,  …(.
5. Behaviour of Sequences

What does it mean for all the second differences to be constant, as in the above example? In particular, it might indicate something about the function from which the data values originally came. The first difference tells us the difference in successive values for a sequence. The larger the first difference is, the faster the sequence grows. When the first difference is relatively small but positive, the sequence is growing more slowly. When the first difference is negative, the sequence is decreasing. When the first difference is constant, the sequence is changing at a constant rate. In general, the first difference measures “change” of the sequence.

Now suppose that the second difference is a positive constant, and the first difference is positive. This tells us that the rate of growth is growing, i.e., the sequence is growing even faster.  Consequently, we see that the original sequence cannot be defined as a linear function, because linear functions grow at a constant rate and have a second difference equal to 0. Thus when the second differences are positive, the sequence has to grow faster than a linear function. While there are many possible candidates for such a function, the two most prominent are exponential functions and polynomials.

6. Number sequences for physics, engineering and art

Sequences of numbers have unexpected and practical uses in many areas of science and engineering, including acoustics. For example they find application in measuring concert hall acoustics, radar echoes from planets, the travel times of deep-ocean sound waves for monitoring ocean temperature, and improving synthetic speech and the sounds associated with computer music.
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