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Abstract 

LOGO has been evolving in incremental steps for 40 years. This has resulted in steady progress 
but some regions of the space of all programming languages for children cannot be reached 
without passing through unacceptable intermediate designs. What are the ultimate aims of 
LOGO? What criteria and aesthetics should be used in determining which areas of the design 
space are most promising? What would the ideal programming language look like? Would a 
family of special-purpose languages be more effective than a single language? 

In looking to the future what can we learn from the history of LOGO? What can we learn from 
other programming systems for children? Alan Kay is leading a new project entitled, “Steps 
toward the Reinvention of Programming”.  What are its strengths and weaknesses? 

We can conceptualise the design alternatives as defining an n-dimensional space. Some 
dimensions represent major alternatives for syntax, others for dealing with concurrency, others 
for the underlying computational models, and others for features of the programming 
environment. 

The goal of this paper is to spur a discussion of these issues. I will present my personal opinions 
based upon 30 years of research experience in this field. 
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The Trajectory of LOGO 

I could not agree more with you about current Logo being out of date and am planning to 
immerse myself in thinking about what a language for 2005 (or so) could be.  

   - Seymour Papert (personal email to the author, June 14, 1999) 

The Past 

In the last 40 years LOGO has moved FORWARD 1 many times. Sometimes it has been cloned 
and copies have headed off in somewhat different directions. Colour was added. 3D was added 
to some branches of the LOGO tree. Object-orientation and multiple turtles were incorporated. 
Concurrent processes were supported. Advanced user interface gadgets were added. There 
have been many valuable improvements. 

Sometimes language designers imagined languages that could not be reached incrementally 
from LOGO and new child-oriented programming languages appeared elsewhere in the design 
space. Smalltalk (Kay 1993) was probably the first language that was inspired by the LOGO 
“philosophy” but not part of the language evolution. Boxer (diSessa 1997) and ToonTalk (Kahn 
2001b) are other examples. These languages borrowed some of the powerful ideas of LOGO 
but did not grow out of LOGO itself. Other languages such as AgentSheets (Repenning et al 
2000), StageCast Creator (Smith et al 2000), and Alice (Conway et al 2000) share many of the 
goals and ideas underlying LOGO but developed without explicit influence from LOGO. 

In some cases, separate language trees have branches that share the same region of design 
space. The Etoys system of Squeak/Smalltalk (Allen-Conn and Rose 2003), for example, is 
similar to some modern LOGO systems. 

Possible Futures 

One future is for LOGO to continue to improve incrementally. The difficulty here is that radical 
improvements are not incremental and are frequently disruptive. The intermediate points in the 
design space are often not viable: being “neither fish nor fowl”. 

Another future is described by Alan Kay and colleagues at the Viewpoints Research Institute in a 
recently funded 5-year project (hereafter called the VPRI Project) to reinvent programming, 
especially for children (Kay et al 2006). It proposes to build a new computing system and 
programming language with many innovative properties: self-explanatory systems, separation of 
intent and optimisations, a self-modifiable implementation, extreme portability, well-integrated 
and transparent tools and operating system functionality, and a classless prototype-oriented 
object model. 

Another future is that papers such as this one sparks discussions in the wider community that 
lead eventually to the design and implementation of a new language (or languages). 

What are the Ultimate Goals? 

What are our ultimate goals in designing the ideal programming language for children (and other 
learners)? One answer is that we want to give kids (and as many of them as possible) the power 
to express themselves computationally. Alan Kay expressed it well in his 1984 Scientific 
American article (Kay 1984): 

The protean nature of the computer is such that it can act like a machine or like a 
language to be shaped and exploited. It is a medium that can dynamically simulate the 
details of any other medium, including media that cannot exist physically. It is not a tool, 
although it can act like many tools. It is the first metamedium, and as such it has degrees 
of freedom for representation and expression never before encountered and as yet 
barely investigated. Even more important, it is fun, and therefore intrinsically worth doing.  



... Computers are to computing as instruments are to music. Software is the score, whose 
interpretation amplifies our reach and lifts our spirit. Leonardo da Vinci called music “the 
shaping of the invisible,” and his phrase is even more apt as a description of software.  

We want a language that is truly general purpose and not based upon a limited special-purpose 
computation model. Or, as discussed below, maybe the goal shouldn't be a single programming 
language but a family of languages. 

Besides giving children the ability to express themselves in fundamentally new and powerful 
ways, we also want to give them objects to think and learn with. This is the deep idea underlying 
Papert’s Mindstorms (Papert 1980).  

Thirdly, we want to give children new mathematically interesting objects to think about as well as 
think with. One can direct one’s thoughts at a programming language itself and appreciate it as a 
mathematical object and as a model of computation. Perhaps Lisp and its underlying lambda 
calculus are at least as worthy of study as, say, trigonometry. 

I think LOGO has compromised the goal of providing a language to think about by giving priority 
to other goals. Lisp and Prolog, for example, can describe themselves in very short programs. 
LOGO, with its distinction between functions and commands, its syntax, and the special forms 
(IF, WHILE, etc.) of many dialects, make it much harder to implement LOGO in LOGO. And it 
makes it harder to think about how LOGO works and what it is. 

The VPRI Project led by Alan Kay aims to build a language and system that is simpler and better 
suited for self-description and self-inspection. It also is exploring the possibility of making the 
system self-explanatory. Their plan is that the system can explain its own structure and 
operations. Using AI techniques, it will automatically generate explanations to support end-user 
exploration. 

Whose Design Aesthetics? 

The design of LOGO was largely based upon Lisp. The design of Lisp was largely based upon 
the lambda calculus, a branch of mathematics. This makes Lisp (and to a lesser extent LOGO) a 
language that is not only a good tool for expressing programs but an object to think about and 
with. One consequence of this is that Lisp is well-suited for meta-programming. Programs can 
construct other programs. Programs can reflect upon themselves. This is a consequence of the 
small powerful kernel underlying Lisp that is based upon lambda calculus. Alan Kay in a talk at 
Stanford in 2003 described Lisp as “a mathematical object that can see itself”. The idea of a self-
referencing language kernel is one of the inspirations behind the VPRI Project. The kernels of 
some programming languages such as Lisp, Prolog, concurrent constraint programming 
languages, and functional programming languages have a mathematical beauty. A very small 
basis set can generate incredible richness. In contrast, languages like Smalltalk, Oz, Python, 
and Java were designed by computer scientists. The beauty and elegance of these languages 
seems more akin to that of engineering than mathematics. We either have to choose which 
aesthetic will drive the design or take the gamble that we can design something that 
simultaneously is a mathematical and engineering jewel. 

If one is pursuing mathematical beauty then basing the language design on well-established 
mathematics is much easier and safer than also inventing new mathematics. For example, a 
language can be based upon lambda calculus which is a theory of functions or instead on a 
calculus of processes such as the pi calculus. Perhaps we should be building languages based 
upon processes rather than functions since processes are more valuable and fundamental. If so, 
the design of the ideal programming language for children should focus upon doing concurrency 
right and not be as concerned about functional programming. 

It may be that in practice even the mathematically beautiful programming languages are 
complex engineering artefacts. Maybe the structure and elegance of the kernel matters little if 
programmers need to put most of their efforts into understanding large engineered libraries of 
useful components. Not much real programming is done completely bottom up from language 



primitives. And even if someone builds a large program “from scratch”, much of their cognitive 
effort typically goes into designing and using the higher level chunks of code. 

I think this situation is analogous to the idea of reductionism in science and philosophy. It is a 
great achievement that one can understand everything in the universe in terms of atoms, or 
elementary particles, or quarks, or super strings. It is important that things can, “in principle”, be 
reduced to primitive elements. In theory, it can explain why you can't put a round peg in a square 
hole. But usually it is not the level at which informative, helpful, or satisfying explanations come 
from. Similarly, I think it is great if one can see that a complex program bottoms out ultimately in 
a small set of primitives even if most of one's thinking about programs occurs at higher levels of 
organization. In science one discovers new entities and laws that emerge at different levels. 
Maybe we should be looking for these emergent properties at higher levels of software as well. 

The VPRI Project aims to go one step beyond an elegant software kernel by connecting the 
kernel primitives to the physical hardware in a transparent and customisable fashion. By building 
upon some clever bootstrapping techniques they plan to build self-describing kernels that also 
describe mappings to the machine language of the target machines. The hope is that curious 
non-professionals will be able to understand the entire system down to the metal. 

A very Brief Introduction to ToonTalk 

I began designing and building ToonTalk in 1992 (Kahn 1996). I was inspired by Seymour 
Papert’s description of LOGO as taking the best ideas from computer science about 
programming languages and environments and “child-engineering” them (Papert 1977). I took 
computational ideas from the concurrent constraint programming field (Saraswat 1993) and user 
interface ideas from computer games and made a language that looks and feels like a game but 
is really a powerful concurrent programming language. The child enters a virtual world and 
constructs programs by training animated robots to manipulate boxes, birds, trucks, numbers, 
and various other tools. Programs are constructed by demonstration with examples (Kahn 
2001a). The fundamental idea is that sophisticated computational abstractions can be made 
accessible by providing concrete analogues without loss of expressive power. 

Design Aesthetic of ToonTalk 

Is ToonTalk an example of a design guided by engineering aesthetics? It appears to be in the 
engineer/computer scientist family of languages. It has many more primitive elements and 
constructs than say lambda calculus underlying Lisp or the Horn clauses underlying most logic 
programming languages. And yet its design was directly inspired by concurrent constraint 
languages which are mathematical beauties. What happened? 

ToonTalk has very few true building blocks. There are pads (atomic data), boxes (compound 
data structures), birds/nests (communication channels), and robots (program fragments). What 
about all the other things in ToonTalk? They are ways of expressing certain kinds of actions, not 
things themselves. A truck is not really a part of a ToonTalk computation but is a way of 
expressing the spawning of a new process. The Magic Wand is not a thing but a way of 
expressing the copying of other things. The helicopter is a way to monitor an ongoing 
computation at different scales and locations. Notebooks were designed as a way to obtain the 
functionality of a file system for persistence and sharing. But notebooks can also be used as an 
alternative to boxes and from a mathematician’s view this overlapping of functionality is ugly. 

ToonTalk often operates at a level below that of the concurrent constraint programming 
languages. In Janus (Saraswat el at 1990), you can understand communication as the asking 
and telling of constraints. In ToonTalk, the corresponding constructs are waiting for things to 
arrive on a nest (asking) or giving things to birds (telling). Despite a direct mapping between 
Janus and ToonTalk, it is hard to see the underlying constraint programming of ToonTalk.  

Is the ToonTalk world too rich? Would a sparser set of primitives lead to a language that is a 
better object of study and contemplation? Would a sparser ToonTalk have more layers of 



software? Could these higher-level components be concretised as well as ToonTalk currently 
does? Many good questions remain. 

The Ideal Programming Language 

After 15 years of ToonTalk work and experience I now imagine an ideal language as retaining 
many of the concepts and strengths of ToonTalk with these differences: 

1. Tiny kernel. The kernel of the language should be as elegant and powerful as possible. 
The design of a language like ToonTalk could be guided by the aesthetics of 
mathematicians. 

2. Multiple representations. ToonTalk's support for programming with concrete examples 
in an action-oriented fashion using metaphorical analogues of computational abstractions 
could be augmented with corresponding static pictorial representations such as comic 
books (Kindborg 2001) and a textual or tile-based symbolic language. Discussed in detail 
below.  

3. Composing components. One lesson from several research projects that I have 
participated in (Playground (Hoyles 2002), WebLabs (Kahn et al 2005), BBC (Kahn et al 
2006), ReMath, and Constructing2Learn (Kahn 2007)) is that a very effective way to 
enable beginners to quickly build programs they care about is to provide them with a 
library of easily composable high-level components. These components should run as 
autonomous processes with no or minimal interfacing. Children can start programming “in 
the middle” and move “up” by composing program pieces and move “down” to 
understand, modify, or create new components. 

4. Exact arithmetic. ToonTalk's exact rational arithmetic (Kahn 2004) could be augmented 
with exact irrational numbers (Boehm, H-J. 2004). Rather than mislead or confuse 
children with “leaky abstractions” for numbers (e.g., limited precision floating point 
numbers), we could provide them with exact implementations of rational and real 
numbers. One technical challenge with computable irrational numbers is that the 
determination of whether a number is equal to another may not terminate. 

5. Exact geometry. Perfect or ideal geometry could be supported. We should explore 
whether it is feasible to build geometrical objects that are pixel perfect at any scale or 
size. Imagine a circle or a fractal consisting of dimension-less points that glow. As one 
zooms in on an increasingly small portion of the object, the screen pixels are computed 
accurately. At extreme scales, such as a googol-fold zoom, the system may begin to slow 
down as the exact rational or real arithmetic may become relatively expensive. Turtle 
geometry could also be implemented using exact real arithmetic (or an approximation 
that ensures that no anomalies are observable). Such an implementation would make 
“real” and “concrete” the idealizations of geometry. 

6. Time travel. A better version of time travel could be supported. ToonTalk provides users 
with the ability to travel in time (Kahn 2006). They can go back to an earlier time in their 
session and replay or revise the past. These time travel records can be copied and 
shared with others. The implementation sometimes imposes an unacceptable 
performance penalty upon the system but in other cases it is very useful for undoing, 
reviewing, and creating demos for others. A new implementation could dramatically 
reduce the performance cost in many cases. ToonTalk's time travel enables one to 
replay the past from the viewpoint it was viewed originally. A more general and useful 
version would allow one to “move the camera” while replaying and maybe to join the 
scene as an (observer-only) ghost until such time as one is ready to fork the time line. 

7. Debugging tools. Children are rarely given a powerful set of debugging tools. Too often 
they have few alternatives to adding SHOW or PRINT statements to their programs. 
Time travel is a powerful debugging tool but it is not a complete solution. Children should 
have the kinds of tools that a modern Integrated Development Environment such as 



Eclipse offers. The challenge here is to child-engineer the user interface without reducing 
its power. 

8. Run everywhere. Programs can run on mobile devices, web browsers, and robotic 
construction kits. While I expect that programs will typically be constructed and debugged 
from inside a virtual world, they could run as well in browsers, mobile devices, and other 
platforms. ToonTalk programs currently can be automatically converted to Java and run 
as applets in browsers. Perhaps something similar could be done to run on other 
platforms as well. It probably isn't practical to expect the programming environment to run 
on these more limited devices or contexts but when an application can be isolated from 
the environment it should be possible to generate a stand-alone version with much lower 
run-time requirements. 

9. For professionals too. ToonTalk is rarely used by professional programmers to 
accomplish their tasks. Perhaps the ideal language for children and non-professionals 
should provide support for professionals as well. NetLogo has succeeded in 
simultaneously supporting students and researchers in building and exploring simulations 
of multi-agent models. 

10. Distributed implementation. ToonTalk’s model of concurrent and distributed 
computation should be preserved but with a more general and flexible implementation. A 
distributed persistent implementation (perhaps building upon distributed hash tables) 
could provide a foundation for inter-process communication to achieve peer-to-peer 
distribution, persistence, and scalability. This could provide a unique and powerful means 
of collaboratively programming over the network. 

11. Inside a virtual world. Programming would take place within a 3D persistent shared on-
line virtual world with an integrated physics engine. Discussed in detail below.  

Another idea is that the language should run with zero installation, possibly as a web service 
accessed via a browser. The storage of programs on the web service would enable students to 
seamlessly continue to work on projects as they move from school to home and back again. The 
implementation constraints entailed by web services will make the above list of enhancements 
even more challenging to accomplish. 

How should the Ideal Language Support Concurrent and Distributed Computation? 

Over the last ten years, I've had many technical discussions about why I believe that ToonTalk's 
model of concurrency is better than that provided by multi-threaded LOGO implementations 
(including StarLogo and NetLogo) and Squeak. 

Very briefly, what we want are not multiple processes that cause side effects on the 
environment, but processes that also consume and produce data. These processes need ways 
to communicate, synchronize, and coordinate via primitives that are accessible by non-expert 
programmers. The way ToonTalk does this enabled, for example, the computational exploration 
by children of infinity and cardinality (Kahn et al 2005). 

Concurrency combined with destructive operations upon shared data and variables leads to race 
conditions and other very hard to track down bugs. Attempts to introduce locks and atomic 
actions add complexity and the risk of deadlock. I strongly believe that destructive operations 
upon shared data should not be part of any language with a general model of concurrency. And 
non-general models of concurrency such as that of StarLogo and NetLogo are useful only in 
limited situations. 

Furthermore, I believe we want to support children in building distributed computations. This 
need not add complexity to the system if the model of concurrency generalizes to processes 
running on different computers communicating over a network, as is the case in ToonTalk. 
Despite limitations of the partial implementation of distributed computing in ToonTalk, various 
networked games have been built such as Battleships and two-player Pong. Swiss high school 
students have implemented a chat system in ToonTalk. 



Also the communication mechanism used by programs should be of use for human-to-human 
communication as well. In the Playground Project young children used ToonTalk's long-distance 
birds to exchange their ToonTalk games as well as text messages. 

The concurrency of a programming language should have a solid theoretical foundation such as 
that offered by the pi calculus. 

What is lost by making computational abstractions concrete as ToonTalk does? 

Let's consider an example. Suppose we want a robot that can take a stream of incoming objects 
and produce two outgoing streams each containing every other element. Figure 1 is a series of 
pictures of the training of such a robot. 

Here's the equivalent robot in pseudo-code: 

to Split In Out1 Out2 

        if In receives X then 

send X on Out1 and 

Split In Out2 Out1 // notice the arguments are swapped 

end 

 

 

Training the Split robot 

 

Giving the input to the first bird 

 

First bird delivering input 

 

Setting aside the first bird 

 

Moving second bird to first bird’s box 

 

Putting first bird in second bird’s box 

Figure 1 – A Robot Splitting a Stream of Numbers 

I believe there are many children and adults that understand how the Split robot works, 
especially after watching it in action, will find the equivalent Split procedure perplexing. And 
maybe an even smaller proportion of those who can program the Split robot could construct the 
Split procedure. 

But have those who can program the Split procedure lost something by using ToonTalk instead? 
One thing they may have lost is the ability to see “at a glance” what the program does without 
running it. A series of pictures as in Figure 1 helps but currently there are no tools for producing 



them automatically. While ToonTalk can generate a verbal description of a robot, it is often at too 
low a level of detail.  

One answer to the question of what is lost is a formal representation of the program. This is only 
of value to those who are good at thinking using abstract formalisms. But what about those 
learners who aren't good at using abstract formalisms but would become so if they put in the 
effort to learn an abstract programming language? 

Another answer is that the ideal language should support multiple representations that range 
from ToonTalk-like concretizations, to series of pictures, to symbolic representations. And the 
language should support the easy movement between these representations for the same 
program fragment. There are many challenges to designing a seamless multi-representation 
language without comprising any of the individual representations. 

One Language or Many? 

The community has been producing, and will continue to produce, many programming 
languages for children. Should we design a coordinated suite of languages and offer that to 
children or should we focus our resources on the “ideal” language? The argument for multiple 
languages is that each one may offer different strengths and ways of thinking about 
computation. The set of ideal languages for children may include those based upon different 
paradigms of programming as well as different levels of concreteness. Special purpose 
languages may have a role in such a basket of languages since they may provide superior 
support for certain classes of problems. 

Multiple languages that are too similar are counter productive. The LOGO community has 
suffered from many incompatible dialects; (Boytchev 2007) lists 173 LOGO dialects. 

Ideally different languages should interoperate together well. Microsoft’s Common Language 
Runtime may provide support for tight integration. In some cases it may even be possible for 
some languages to emit equivalent code for import into a different language.  

If these languages can be tightly integrated then is it best to think of them instead as a single 
multi-paradigm, multi-layered language? 

Some have argued for different languages for different age ranges of children. My experience 
with ToonTalk is that this is not necessary. Children, as young as 3, have built ToonTalk 
programs (Morgado 2003), while university students have used it to explore concurrent 
algorithms. By having a diverse user base, children of different levels of experience and 
expertise are more likely to help each other than if they are using different languages. 

One danger of multiple languages is that they can obscure how apparently different things may 
be fundamentally similar. If, for example, a model of the spread of diseases and a model of the 
spread of technological innovations are built in the same language then the similarity of these 
processes should be easier to perceive. 

Where should Program Construction Take Place? 

This may seem like a strange question. Some people construct programs on paper and then 
enter them into a computer. Some people type their programs into their favourite text editor. 
Others use editors specialized for the programming language. Some programming languages 
support program construction from within the programming environment. A recent trend here is 
to use composable tiles representing program fragments as in Etoys (Allen-Conn and Rose 
2003) and Alice (Conway et al 2000). 

ToonTalk is unique in that program construction takes place from within a game-like virtual 
world. It takes place, not by supporting the editing of textual or pictorial programs from within a 
virtual world, but instead by taking direct “everyday” actions in this world. The ToonTalk world is 
cute and playful and popular with pre-teens but it isn't a place where people spend much time for 



purposes other than constructing, debugging, and running ToonTalk programs. Some children 
spend many hours decorating houses, filling notebooks with artwork, playing with text-to-speech 
engines, and doing mathematical explorations with ToonTalk's exact rational arithmetic. But 
“being there” is rarely the main purpose of visiting the ToonTalk world. 

How might persistent shared on-line virtual worlds fit into the big picture? Second Life is a nice 
example of such a place where the “residents” have built a great variety of places and things in 
this world (Ondrejka and Cook 2005). Croquet has a similar vision (Smith et al 2003). About ten 
million people regularly visit such places. People visit these places primarily for entertainment 
and social reasons but there are more “serious” activities. 

What if one could construct programs from within these worlds in a manner similar to ToonTalk 
programming? It could be done in a way that is quite similar to how ToonTalk currently works 
(including carefully designed concrete analogs to all computational abstractios) but with these 
differences: 

1. 3D. ToonTalk uses sprite animation and 2½ dimensional graphics to provide a virtual 
world. This simplifies but limits things. 3D enables the explorations of many topics in 
science and mathematics. And it enables the programming of very popular classes of 
games. It supports a wider set of contexts for activities. The challenge is to make a 3D 
world that can be navigated and programmed by all. Progress has been made in making 
3D programming broadly accessible with AgentCubes (Repenning and Ioannidou 2006), 
Alice (Conway et al 2000), Elica (Boytchev 2003), and forthcoming versions of NetLogo 
and StarLogo. 

2. Realistic physics. Many virtual worlds today have “physics engines” that support 
collisions, gravity, friction, rigid body motion (with joints), and more. It is unreasonable to 
expect such physics engines to be built by children. But they can be customised and 
parameterised by all. A programmable world with a built-in physics engine enables many 
explorations in sciences (e.g., sports science or mechanics). And it opens up a whole 
new class of games that children can create.  

3. Virtual communities. Inhabitants of a shared on-line virtual world can provide help to 
each other in ways that are currently feasible only in face-to-face encounters. One can 
meet and build things together. Someone half way around the world can help others build 
and debug a program by being in the same place, manipulating the same objects, and 
conversing the whole time. People currently collaborate in ways that are more awkward 
using web sites, email, and the like. These communities can also have out-of-world 
support from associated “Web 2.0” sites. 

4. Living with your creations. One is more motivated to build things that work in the place 
where one spends one's time. If people inhabit these spaces for reasons other than 
programming, then programming becomes a tool for enhancing their “living space”. Their 
creations are things they can enjoy while they are in a virtual world for social or 
entertainment reasons, rather than objects that exist only when they are in some 
programming system. Examples include virtual pets, useful gadgets, kinetic sculptures, 
and long-lasting simulations.  

Where does Turtle Geometry fit into the Picture?  

Despite my love of turtle geometry, it is not part of ToonTalk. In 1995, I tried to add it and began 
user testing. The idea was that there was a bird for each picture. If you gave the bird a box 
containing the text pad FORWARD and the number pad 100 then the bird would deliver the 
message to the picture and it would move forward 100 units in the direction of its current 
heading. Non-programming adults and a fourth-grade class seemed to understand the concepts 
of ToonTalk (despite its primitive state) but were unhappy with this message passing interface. It 
was too indirect and clumsy. 



I redesigned ToonTalk to include remote controls to support picture programming in a more 
direct intuitive manner. For example, a sensor for the horizontal position of a picture appears just 
as numbers do (except it has an animated marquee to indicate its special status). One can 
manipulate this remote control as an ordinary number and the associated picture's position 
changes accordingly. This also works in the other direction: if the picture is moved, the number 
is updated. This scheme is similar to the property sheets used in a huge variety of software 
where the properties show the current state of an object and can be edited to change the object. 
In ToonTalk the equivalent of a property sheet is broken up into small pieces corresponding to 
single properties. This provides a nice “declarative” interface for objects. Children as young as 
six in the Playground Project made heavy use of these ToonTalk remote controls (Hoyles 2002). 
But these remote controls only support Cartesian geometry and don't support turtle geometry. 

So why not add FORWARD and RIGHT sensors to ToonTalk? The equivalent of a RIGHT 
sensor would be straightforward; just add a sensor for the heading of a picture. The equivalent of 
RIGHT 90 would be to drop a number pad with 90 on the heading sensor and the current 
heading will be incremented by 90 degrees. But what sensor would play the role of FORWARD? 
This stumped me for many years. The best idea I have is to introduce a sensor for the picture's 
distance to where you want it to be (in the direction of its current heading). So if you dropped 
100 on such a sensor the picture would move forward 100 steps. The really odd thing is that this 
sensor would always display 0 since as soon as it is changed the picture moves and it is where 
you instructed it to be. Maybe a better version would be a sensor for the distance to its “goal”. If 
its speed is infinite then it will also always display 0 but if it is given a finite speed it will glide 
towards its goal and the value displayed will decrement at the speed until it reaches zero. Some 
other design issues remain such as how to integrate the trails left by turtles' pens. Are they new 
objects or are they alterations of the surface they are drawing on? 

I now believe that rather than choosing between message passing and declarative user 
interfaces (property sheets/remote controls) that they should coexist at different levels. The 
primitive low-level way of manipulating pictures could be via message passing as I originally 
intended a dozen years ago. This will probably be used only by more advanced users, 
particularly those enhancing the system itself. The ideal system should provide primitive support 
so that remote controls can be built within the system. They would behave much as they 
currently do in ToonTalk but their implementation would be transparent. Ordinary users could 
inspect, edit, and create new kinds. The challenge here isn't just to implement sensors within the 
language but to do so in a manner that non-experts can understand. This is one of the 
challenges the VPRI Project led by Alan Kay is addressing. 

More generally, I think a good way to proceed is to open the development of new “primitives” to 
a wide community. The kernel of the system can be small but include a way to “plug in” modules 
written in nearly any programming language. This could be based upon an improved version of 
ToonTalk's foreign birds that provides a way to use birds to interface external code. The bird or 
message passing level of interface can then be built upon to provide higher-level functionality if 
need be. 

Conclusions 

In the 40 years since LOGO was born there has been good incremental progress. Computer 
science has also made substantial progress in models of computation and user interfaces. 
Building upon this progress and drawing upon our experiences with LOGO, Smalltalk, Boxer, 
AgentSheets, StageCast Creator, ToonTalk, Alice, StarLogo, NetLogo, and Scratch we should 
be discussing where to go next. We should jump to promising regions of the design space rather 
than making slow and steady turtle-like progress. Rather than REPEAT n [FORWARD 1] we 
need to determine a good (n-dimensional) heading and go [RIGHT heading FORWARD 1000] to 
the next generation of programming languages for children of all ages.  
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